Origami reshapes structural engineering

Scientists are bringing out the practical side of origami. Inspired by the Japanese art of paper-folding, they have discovered structures that are extremely difficult to deform. Besides the obvious potential applications in architecture, these shapes could find their way into robotics and equipment for use in space.

Researchers at the University of Tokyo, the University of Illinois and the Georgia Institute of Technology have hit upon designs that, when extended, are significantly more rigid than conventional structures. The U.S. National Science Foundation is supporting research toward industrial uses.

Tomohiro Tachi, an assistant professor at the University of Tokyo, is working on developing special software that would allow companies to employ “origami engineering.” It could be ready in two or three years.

He has already developed a program that can calculate designs for extendable structures created by folding paper.

Powerful fold

By making calculations on a computer, it is possible to create designs that take into consideration not just form but also movement — such as elongating and contracting.

A lot of attention has focused on a design called the “Miura fold,” conceived by University of Tokyo Professor Emeritus Koryo Miura, a pioneer in the origami engineering field. His pattern combines parallelograms; essentially, it entails folding paper into the shape of a bellows. This enables the creation of compact yet expandable objects — from maps to panels for space probes.

Tachi created a prototype structure that combines a pair of Miura folds to form a tube. That is then combined with another pair. This makes deformation less likely.

Why two pairs? Tachi tested the rigidity of a lone tube and a combined tube and found that the combination of the two created a structure 100 times as rigid as, or 100 times less deformable than, a conventional shape.

The approach of increasing rigidity by combining two structures is not new. But this time, the goal was to find an extendable structure that is resistant to accidental deformations. Tachi’s structure could be used for, say, robotic arms, which must be extremely rigid to avoid accidents.

Tachi has a host of possible uses in mind. “We are aiming for applications that can be moved and reused, such as foldable emergency shelters and portable pavilions,” he said.

Give it a share: